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ABSTRACT

Magnetoacoustic oscillations in a solar coronal inhomogeneity (e.g., coronal loop) are shown to take place
with two distinct periodicities, one on an acoustic (long) time scale and the other on an Alfvénic (short)
time scale. The short period modes—fast magnetoacoustic waves—are trapped in regions of low Alfvén speed;
typically, this corresponds to high density loops or dense open field regions. Their periods may be on the
order of seconds. We discuss the form of the fast oscillations for both standing modes in a closed loop and
impulsively generated disturbances in a loop or open field structure. Impulsively generated waves in a density
enhancement exhibit both periodic and quasi-periodic phases. Symmetric oscillations (sausage modes) are
analogous to Pekeris waves in oceanography; asymmetrical (kink) disturbances are akin to Love waves in
seismology. It is suggested that fast magnetoacoustic waves may explain the observed pulsations in Type IV radio
events, the sausage waves providing the desired 1 s periodicities.

Magnetoacoustic oscillations provide a potentially useful diagnostic tool for determining physical conditions

in the inhomogeneous corona.
Subject headings: hydromagnetics — Sun: corona

I. INTRODUCTION

The magnetic atmosphere of the solar corona can be viewed
as made up of coronal loops (magnetic flux tubes), the
transverse dimensions of which are much shorter than
longitudinal ones. The atmosphere is dominated by magnetic
forces; the flow of heat is principally along the field lines,
so that lateral temperature inhomogeneities are readily
maintained. Density inhomogeneities also occur. As a result,
a magnetic flux tube can become “visible,” standing out from
its neighbors, even though the whole of the atmosphere is
permeated by magnetic field.

Inhomogeneities in magnetic field strengths are probably
not large, but even in a uniform field strong density variations
will result in strong differences in Alfvén speed, and it is the
Alfvén speed (rather than the field itself) that governs the
character of oscillations.

The elastic nature of a magnetic field, and the fact that the
corona is everywhere permeated by a field, suggests that the
corona should support MHD oscillations. What type of mag-
netoacoustic oscillation can a structured, low-f, atmosphere
support?

To answer such a question, we model a coronal loop by a
straight magnetic flux tube (cylinder) embedded in a magnetic
field. The effects of loop curvature and gravitational stratifica-
tion will be ignored in order to exhibit clearly the important
role of field structuring on magnetic oscillations. A coronal
loop, then, is viewed as a region of density and temperature
inhomogeneity in an otherwise uniform (unbounded) medium.
(There may also be a corresponding inhomogeneity in
magnetic field strength, but this is not important.)

There are two classes of free modes of oscillation of a
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magnetic tube, one with acoustic (slow mode) characteristics
and the other with Alfvénic (fast mode) features. Since the
Alfvén and sound speeds in the corona are generally widely
separated, differing perhaps by an order of magnitude, the
time scales of the two classes of oscillations are also widely
separated. Additionally, the fast magnetoacoustic modes have
separate time scales accordingly as the oscillations are sym-
metrical (sausage modes) or asymmetrical (kink modes)
about the axis of the loop. The sausage modes have the
shortest time scales in the system.

The fast waves arise as a free mode (with real frequency and
wavenumber) only for a loop with an Alfvén speed that is
lower than that in its surroundings. Thus, essentially, only
high density loops can oscillate freely (without radiating
energy to infinity) in the fast magnetoacoustic mode (Edwin
and Roberts 1982, 1983). Dense loops may act as wave ducts,
trapping fast magnetoacoustic waves (see also Habbal, Leer,
and Holzer 1979).

What observational evidence is there for coronal oscillations
and, in particular, for the splitting into two or more time
scales described above? The solar flare and radio data seem to
provide the bulk of the available evidence for coronal
oscillations or pulsations. Short period oscillations, with
periodicities of ~1 s, have long been known from radio
observations (for a general review, see Kriiger 1979). Indeed,
it has been suggested that short period pulsations may be
explained, at least in part, by considering the modulational
role of an oscillating coronal flux tube (Rosenberg 1970).
Also, long period (1 minute) radio pulsations have been
reported by Trottet, Pick, and Heyvaerts (1979), the oscil-
lations occurring in a large magnetic arch some 10 minutes
after the rise of an active prominence. Oscillations with

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984ApJ...279..857R

g57R!

VA

pJ

F1T9B2A

858 ROBERTS, EDWIN, AND BENZ

periods of 43 s, 80 s, and 300 s have recently been reported
by Koutchmy, Zhugzhda, and Locans (1983), observing a
magnetic arch in the 5303 A green coronal line of Fe x1v, and
Strauss, Kaufmann, and Opher (1980) have noted an unusual
5.6 min oscillation in a loop prominence.

We explore here the possibility of explaining this diversity
of periodicities, ranging from seconds to minutes, within a
single framework, namely, that of the magnetoacoustic
oscillations of a flux tube. In this, we consider both standing
modes of oscillation and propagating modes; in each case, the
disturbances are trapped within a dense part of the corona.
The standing modes may arise in a coronal loop, the ends of
which are embedded in the high density chromosphere-
photosphere. Propagating waves may occur in a coronal
loop or in an open field region. For the most part, our
discussion will center on the fast magnetoacoustic waves.

It is appropriate at this point to comment briefly on
Rosenberg’s (1970) theory of oscillations in a magnetic tube.
His treatment of coronal oscillations is oversimplified in that
it ignores the important influence of the loop’s magnetic
environment and considers pure radial modes only. A more
thorough analysis of Rosenberg’s model has been presented
by Meerson, Sasarov, and Stepanov (1978), but these authors
confined their attention to radiative modes, overlooking the
free modes of oscillation that we exploit here. In fact, our
treatment supports Rosenberg’s conclusion, that oscillations
with periods on the order of the tube radius divided by the
fast magnetoacoustic speed may arise, though the detailed
structure of such oscillations is necessarily absent in his
account.

Much of the ensuing discussion of fast waves in coronal
inhomogeneities simplifies considerably in the limit of a low-f8
plasma, appropriate for most of the solar atmosphere. In this
extreme, trapped fast waves are analogous to the Love waves
of seismology and the Pekeris modes of oceanography (Edwin
and Roberts 1982, 1983). This unexpected analogy, valid for
fast magnetoacoustic waves in the low-f limit, affords us a
valuable insight in describing the nature of freely propagating
modes. In particular, by analogy with extensive studies in
oceanography and seismology, we are able to show that
impulsively generated fast waves exhibit both periodic and
quasi-periodic signatures, with periods of the order of 1 s for
reasonable coronal parameters. The evolution of a disturbance
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generated impulsively, perhaps by a flare, is shown to resemble
the pulsations recorded in the Type IV radio data. This leads
us to suggest that the radio pulsations are, in fact, produced
by fast magnetoacoustic waves propagating in a dense region
(wave duct) of the corona.

If such an identification, of fast magnetoacoustic waves with
the observed pulsations in Type IV radio events, proves
correct, then the radio signature (like the seismograph signa-
ture) becomes a valuable diagnostic tool for in situ
conditions in the corona: it allows an estimation of the Alfvén
speed (both within and external to a density enhancement)
and the spatial dimension of such inhomogeneities. The
duration of a train of pulses is, for example, a measure of the
strength of the density inhomogeneity and the distance of the
observation point from the source; the periodicity is a measure
of the diameter or width of the inhomogeneity; and so on.

II. MAGNETIC OSCILLATIONS

We represent a coronal loop by a straight magnetic cylinder
of radius q, field strength B,, gas density p,, gas pressure po,
and temperature T,. Outside the cylinder, the field strength is
B,, the gas density p,, the pressure p,, and the temperature T,
(see Fig. la). We consider the adiabatic oscillations of this
state, as described by the usual equations of ideal MHD.

The magnetoacoustic oscillations of a magnetic cylinder
have been extensively investigated by Edwin and Roberts
(1983), whose notation we follow. Under coronal conditions
(Alfvén speeds greater than sound speeds), Edwin and Roberts
show that the oscillations of the cylinder are governed by the
transcendental dispersion relation (see also Wentzel 1979;
Wilson 1980; Spruit 1982)

K(m,a)
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FIG. 1.—(a) The equilibrium structure and (b) modes of oscillation of a cylindrical magnetic flux tube, showing the form of symmetric (sausage) and

asymmetric (kink) modes.
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F1G. 2.—The phase-speed w/k as a function of longitudinal wavenumber
k for the fast and slow magnetoacoustic waves in a flux tube under
coronal conditions, va, > va > ¢o > ¢ > ¢,. Solid curves, sausage modes;
dashed curves, kink modes. (After Edwin and Roberts 1983.)

and J,, K, are Bessel functions of order n, with derivatives
J, K;. In the above, k is the wavenumber along the magnetic
field, w the frequency, and all disturbances v are assumed to
have Fourier form

v = o(r) exp [i(wt + nf — kz)]

in cylindrical coordinates (r, 6, z). Only the n =0 (sausage)
and n = 1 (kink) modes will be considered; their geometrical
form is sketched in Figure 1b. The characterlstlc speeds that
arise are: the sound speeds co = (yPo/P0)"% c. = (ype/pc)!*:
the Alfvén speeds v, = (B0/47rp0)”2, Vap = (BZ/47tpe)”2 and
the tube speeds ¢y = cova/(cd + 03)Y2, Cre = CoUac/(€Z + Ve)"2.

Equation (1) has been derived under the assumption that
m? is positive. For w and k real, this corresponds to there
being no radial propagation outside the cylinder r = a:
motions in the environment arise simply in response to those
generated inside the cylinder. In other words, the oscillations
of the magnetic flux tube are confined to the tube and penetrate
only a short distance into its surroundings. These are the free
modes of oscillation of the tube.

The solution of equation (1) is depicted in Figure 2, where
the phase speed w/k is sketched as a function of k for
coronal conditions (i.e., for Alfvén speeds larger than sound
speeds). It is immediately apparent that there are two, well-
separated, modal classes, corresponding to the usual fast and
slow magnetoacoustic waves. Considering first the slow
waves, we see from Figure 2 that they are only weakly
dispersive, that is, their phase speeds are only weakly dependent
upon the wavenumber k. Indeed, since in a low-f plasma the
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tube speed cr is close to the sound speed ¢,, the phase speeds
of both the sausage and kink modes are given, to a good
approximation (provided ka is not too large), by w/k = ¢;.
By contrast, the fast waves are strongly dispersive. The
phase speeds of both the sausage and kink modes lie in the
range v, to va.. These waves exist as free (i.e., possessing real
 and k) modes only if va, > va; if Vo, < vs, the fast waves
are necessarily radiative (i.e., have complex k or w). In other
words, in an inhomogeneous corona, regions of low Alfvén
speed (essentially high density) act as wave ducts, trapping the
fast magnetoacoustic modes. Furthermore, as is evident from
Figure 2, the fast sausage waves have a propagation cutoff and
exist as free modes only for sufficiently large k (typically ka of
order unity or larger). More specifically, for the sausage
modes, the propagation cutoffs in the wavenumber k are given

2 2 2 2 1/2
(¢ + vi)(vie CT)] (]073)’ s=1,2,3,..., (2)

where j, = (240, 5.52,...) are the zeros of the Bessel
function J,. The frequency w at a cutoff is k. vs, = o,.

The higher harmonics of the fast kink waves also possess
cutoffs but, in contrast to the sausage modes, the principal
kink oscillation exists for all k. In the long wavelength limit
(ka < 1), the phase speed of the principal kink wave is ¢, where

(Po VA + P vie)”z
Ck =\
Po + Pe

is a mean Alfvén speed for the inhomogeneous medium, and is
well known from earlier studies (e.g., Wilson 1980; Spruit 1981).

The behavior of the fast sausage and kink waves may be
most readily examined in the ¢y, ¢, < va, U5, €xtreme. In
particular, it is known from a study of the magnetic slab
(Edwin and Roberts 1982) that in this case the dispersion
relation for the fast kink waves reduces to Love’s equation,
describing the propagation of Love waves in seismology
(Love 1911). Also, the fast sausage wave in a slab is equivalent
to the Pekeris mode of oceanography (Pekeris 1948). See
also Ewing, Jardetzky, and Press (1957) and Brekhovskikh
(1960). The propagation characteristics of fast waves in a
cylinder are similar to those in a slab (Edwin and Roberts
1983), the main difference being that the principal kink wave
has phase speed v,, in the long wavelength limit of a slab
(compared with ¢, in a cylinder). Wavenumber cutoffs and the
group velocity profiles are similar in the two geometries.
Evidently, then, for a low-f plasma the fast waves given by
equation (1) are the cylindrical equivalents of the Love and
Pekeris modes.

We consider now two applications of the above, depending
upon whether the modes arise as standing waves or propa-
gating waves.

a) Standing Waves in a Coronal Loop

Suppose that the fast and slow waves occur as standing
modes in a loop of length L, the footpoints of which are
firmly anchored in the high-density chromospheric atmos-
phere. With disturbances assumed zero at the ends (z =0, L)
of the loop, we may take k = ji/L for integers j = 1,2, 3, ....
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The periods (= 2m/w) of our modes are then given (in cgs
units) as follows:

2L 2\ 1/2
slow modes: 7, = ~— =£.SLT0_”2(1 +c_§) )
Jer J VA
C,=12x10"%; (3a)
2L 4n'L{ po + p, | /2
fastkink: 7, = == g 3b
astiink: 7, =5 = 4L (Fot ) (30)
2ma po + pe\'?
fast Pty =" = dn¥a| g 3
ast sausage: 7 o 4n a(B% e (3¢)

In equations (3a, b) the integer j, which determines the number
(=Jj—1) of nodes in the oscillation along the loop, may be
taken as 1 or 2, these being the modes most easy to excite;
with j = 1 the apex (z = L) of the loop is disturbed, whereas
for j = 2 the apex is undisturbed. In (3¢c) we have estimated
the period of the sausage mode that is first permitted as a free
oscillation (satisfying k > k.) by setting w = kc,; this mode can
therefore arise only if the integer j is sufficiently large (of the
order of L/ma). Of course, generating such a standing mode,
with a single value of j, in exclusion of neighboring modes,
may be difficult. This does not imply, however, that such
short periodicities cannot arise. Indeed, we show below that
short periodicities occur naturally when a propagating wave
is generated by an impulsive source.

b) Impulsively Generated Fast Waves

Propagating waves, rather than standing modes, will result
whenever disturbances are generated impulsively. Such waves
may arise in a coronal loop, if the motions have insufficient
time to reflect from the far end of the loop, or in open field
regions. An obvious source of such an impulsive disturbance
is the flare (providing either a single or a multiple source of
disturbances), but less energetic generators should not be
ruled out. If the waves are generated impulsively, then the
resulting disturbance may be represented as a Fourier integral
over all frequencies w, wavenumbers k. In general, a wave
packet results, its overall structure being determined by the
dispersive nature of the modes.

In our discussion of the behavior of impulsively generated
disturbances, we will confine attention to the low-f (sound
speeds very much less than Alfvén speeds) behavior of the
fast sausage modes. As we noted earlier, the fast sausage
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modes are closely akin to the Pekeris waves in oceanography.
Fortunately, the behavior of an impulsively generated Pekeris
mode is well known (Pekeris 1948; see also Ewing, Jardetzky,
and Press 1957; Brekhovskikh 1960), and may be applied with
only minor changes to the present discussion. In Figure 3a
we show the temporal behavior of the fast sausage mode. The
disturbance is impulsively generated at the location z =0.
Figure 3a gives the behavior at a location z = h. The key to
understanding this evolution of the disturbance lies in the
behavior of the group velocity ¢, = dw/dk as a function of
frequency. This behavior is sketched in Figure 3b.

It is apparent from Figure 3a that there are a number of
distinct phases in the evolution of a disturbance, generated at
z =0 and observed at z = h. The signal arrives at z = h with
a frequency w, = k, v, having taken a time t = h/v,, to
travel from the source at z = 0. This is the start of the periodic
phase. During the periodic phase the frequency and amplitude
grow slowly until, at a time h/v,, high-frequency information
arrives from the source. The result is a strong increase in
amplitude with the oscillation becoming quasi-periodic. The
quasi-periodic stage lasts until t = h/cj™, where cJ'" is the
minimum value of the group velocity. The frequency of the
oscillation at this stage is @™" (see Fig. 3b). Thereafter, for
times ¢ > h/cy™™, the disturbance at z = h declines rapidly in
amplitude, though still oscillating with the frequency w™";
this is the decay (or Airy) phase.

Of particular interest here are the frequencies w, and ™",
which are representative of the frequencies in the periodic and
the quasi-periodic phases, respectively. The frequency
w, = k,va, follows from (2) with s= 1. In terms of period
7, = 27/w,, the low-f limit of (2) yields

1/2 1/2
T=ﬂ(@_ ) _ 2ma (1_&) R
Pe Jo,10a Po,

on noting that p, v ~ p, v3.. The period 7, is the largest time
scale in the impulsively generated disturbance; all other
periodicities, such as the period t™" = 21/w™™ of the disturb-
ance at the end of the quasi-periodic phase, are smaller than

Jo,1VAe

Cq/Vae
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FIG. 3.—(a) A sketch of the evolution of the fast sausage wave in the low-B extreme (co, ¢, < va, Ua.). The sketch shows the various phases in the
disturbance as recorded at an observation level z = h away from an impulsive source at z=0. (A similar sketch has been given by Pekeris 1948 in his
discussion of waves in an ocean layer.) (b) The group velocity ¢, = dw/dk in units of the external Alfvén speed v,, as a function of dimensionless frequency
wafv,, for the sausage wave in the low-f limit. The sketch is for po/p, = 6. Notice the occurrence of a minimum in ¢, at the dimensionless frequency @™"a/va,.
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7.. Note that 7, in turn is smaller than 2zna/(j, 1va) = 2.6(a/va),
its value in a dense inhomogeneity (p, > p.). Evidently, then,
for typical coronal values of a and v,, T, may be small, perhaps
of the order of a second. We note that our formula for t, is
similar to that given by Rosenberg (1970). The frequency
™", which characterizes the frequency at the end of the
quasi-periodic phase, is sketched in Figure 4 as a function of
(Po/pe)''?. Also shown in Figure 4 is the behavior of the
minimum in the group velocity, ¢J'™, as a function of (p,/p,)"'>.
These results will be discussed in the next section.

III. APPLICATIONS

a) Standing Waves

Consider briefly the slow modes. For coronal conditions
(co < va) We have ¢ % ¢o, and so with j =1 equation (3a)
gives 1, = C,LTy Y2 For T, =2 x 10° K and L = 10'° ¢m,
typical of high coronal loops, we obtain 7, = 850 s. Such long
periodicities seem not to have been observed. A recent report
of a 20 min periodicity in a giant magnetic arch (Svestka
et al. 1982) is intriguing, but it is not associated with a loop
anchored in the chromosphere (Svestka 1983, private commu-
nication).

Turning now to the fast waves, the period 7, of the kink
mode may be readily estimated if we suppose that the loop is
very much denser than its surroundings (ie., po > p.) and
B, =~ B,. Then, equation (3b) yields

e (LN}/Z

J ' By
for electron density N, inside the loop, where the field
strength is By. For example, with Ny = 10°cm ™3 L = 10*° cm,
and B, = 40 gauss we obtain t, = 50 s for j = 1. To estimate

the period 7 of the fast sausage- wave we multiply 7, by
na/L, giving

T ), C;=65x10""2cgsunits, (5)

7y = C(naN{'*/By) . (6)

For a/L = 1072, 1 is of the order of a second.
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Consider some observational examples. Trottet, Pick, and
Heyvaerts (1979) have reported quasi-periodic pulsations at
169 MHz of a double source associated with a Type IV radio
burst. The period was of the order of 1 min. The double
structure has been interpreted as the intersections of a magnetic
arch with the 169 MHz plasma level. The length of the arch
was found to be of the order of 1.5 x 10!° cm, and the density
has to be about 3.6 x 108 cm™3 or less. A spectrally resolved
observation (spectrogram) of a similar case is shown in
Figure 5. Seven slow, quasi-periodic pulsations separated by
about 40 s occurred in the 400-800 MHz range. The fact that
no drifts are observed can be interpreted as a simultaneous
oscillation (free mode) of the whole loop. Presuming a high
density in the magnetic arch, taking j = 1 or 2, and B, in the
range from 10-30 gauss, equation (5) for the fast kink mode
yields the observed period.

Another observational study of coronal oscillations that
may be related to the fast kink wave is that recently described
by Koutchmy, Zhugzhda, and Locans (1983). These authors
report periodicities of 43 s, 80 s, and 300 s in power spectra
obtained in the green coronal line 5303 A of Fe x1v. Koutchmy
et al. give Ng=25x10® cm™® and L =12 x 10!° cm;
equation (5)for the fast kink wave then gives 1, = 80sforj =1
and B, = 15 gauss. A similar interpretation, but in terms of
Alfvén waves, has been given by Koutchmy et al.

The fast kink may also provide an explanation of the (rare)
5.6 min oscillation in a loop prominence reported by Strauss,
Kaufmann, and Opher (1980). These authors give L=
1.6 x 10! cm and N, =2 x 10! cm™3, which, when
combined with (5), yields the observed period if B, = 44 gauss.
A similar explanation, though again in terms of Alfvén waves,
is suggested by Strauss et al.

b) Impulsively Generated Waves

We turn now to a consideration of short period oscillations.
The occurrence of short period oscillations in Type IV radio
bursts is well known (see, for example, Rosenberg 1970;
Gotwols 1972; McLean and Sheridan 1973; Achong 1974,
1976; Pick and Trottet 1978; Tapping 1978; Trottet et al.
1981); periodicities are typically in the range 0.5-3.0 s. Short
period oscillations have also been reported in microwaves
(Gaizauskas and Tapping 1980), in hard X-rays (Orwig, Frost,
and Dennis 1981; Dennis, Frost, and Orwig 1981; Kiplinger
et al. 1983), and simultaneously in hard X-rays and microwaves
(Takakura et al. 1983; Kane et al. 1983). (A possible detection
in X-rays has also been reported by Thomas, Davis, and
Neupert 1978.)

We note also that short period oscillations are possibly
superposed on the long period modulation in Figure 5. A very
well observed example is shown in Figure 6. The total band-
width is about 40 MHz. Assuming plasma emission in an
isothermal, static atmosphere (7, =2 x 10° K), a vertical
dimension of 23,000 km is found from the barometric
equation. It is likely that the horizontal dimension, i.e., the
radius of the flux tube, is even less. The apparent source
diameter observed by Trottet et al. (1981), of some 200,000 km,
therefore seems to be caused by scattering. Considering the
height of 60,000 km of the 305 MHz plasma level in standard
models of the density above active regions, we suggest that the
observed source extends only over a small fraction of the total
arch.
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F1G. 6.—Fixed frequency plots of 1980 March 29 from the digital Icarus spectrometer. Quasi-periodic, short-period oscillations between 303 and about
343 MHz. A gliding average background (time constant 5.1 s) has been subtracted.

The occurrence of short periodicities in the coronal plasma,
at radio and X-ray wavelengths, suggests (from the discussion
in § II) that the fast sausage and kink modes are being
generated in density enhancements. The sausage mode has the
smaller time scales and also produces stronger pressure and
density variations. In fact, in all cases of short (and also in
long) pulsations, the Type IV emission is relatively narrow-
banded and therefore, as shown by Benz and Tarnstrom
(1976), likely to be radio emission by high frequency plasma
waves. Kuijpers (1974) has proposed a loss-cone instability of
energetic electrons for the origin of the plasma waves.
Stepanov (1974) has considered a quasi-equilibrium between
such an instability, diffusion of particles into the loss cone,
and subsequent precipitation into the dense atmosphere at the
footpoints. A free mode of oscillation of the arch in which the
particles are trapped may disturb the equilibrium situation
and temporarily increase the energy level of plasma waves.
The sausage mode, in particular, locally changes the magnetic
field strength and thus the orbits of the trapped particles. The
tangent of their loss-cone angle changes by half that of the
field. The equilibrium distribution is likely to be close to
marginal stability of one of the “loss-cone” type plasma
instabilities. Berney and Benz (1978) have shown for whistler
and upper hybrid waves that the linear growth rate and
stability threshold vary considerably with loss-cone (pitch)
angle. The MHD oscillation moves the distribution in and out
of instability. It should be noted that the final fluctuation of
the radio emission may be much larger than the initial
disturbance of the field strength by the wave.

When the fast sausage mode is generated impulsively,
perhaps by a flare, it produces a disturbance of the form shown
earlier (Figure 3a). As we have noted; there are three phases
to the event: a periodic phase, a quasi-periodic phase, and a
decay (Airy) phase. The maximum periodicity in the event is
1. (see eq. [4]), which in turn is less than 2.6 (a/v,). For example,
with Ny, =10° cm™3 and B, =40 gauss, this maximum

periodicity is 1 s for a tube of diameter 2 x 10° km. Our
suggestion here (see also Roberts, Edwin, and Benz 1983) is
that many of the reported short-period pulsations can be
explained in terms of an impulsively generated fast sausage
wave propagating in a dense coronal inhomogeneity. The
inhomogeneity may be in an open field region, or it may be
a dense loop (if reflections from its ends have not had time to
modify the signal).

Because of the distinctive form of an impulsively generated
disturbance, a number of comparisons between theory and
observation are possible. In particular, we may compare the
theoretical duration time of the quasi-periodic phase with the
available observations. In Figure 7 we have sketched the
duration time against the frequency attained at the end of the
quasi-periodic phase. We see that the duration time of the
quasi-periodic phase decreases with increasing frequency
(decreasing periodicity). This may be compared directly with
the results of Tapping (1978), who has plotted (see his Fig. 4)
duration times against pulse repetition rates (equivalent to
the reciprocal of our periodicity). The agreement between the
observed correlation and the theoretical trend (shown in
Fig. 7) is impressive.

In Figure 8 we have plotted the ratio of the cylinder radius
a to the location height h against the duration time 7g4,, of
the quasi-periodic phase. The scales in the figure are determined
by the time of onset of the quasi-periodic phase T,use, and
the pulse periodicity t™". These times are generally known
from the observations, so Figure 8 can be used to infer the
ratio a/h, and thus the scale of the inhomogeneity.

As a specific illustration of the theory, consider the event
reported by McLean et al. (1971). These authors recorded a
series of about 50 regular pulses, the period of which changed
slowly from 2.5 s to 2.7 s during the 150 s lifetime of the
pulse train. We do not know the onset time of the disturbance
which gave rise to the pulse train—the reported start of a
large flare some 25 min before the pulses began seems too
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VAe
F1G. 7.—The variation of the duration time, 74, = h(l/c;"‘“ — 1/va), of
the quasi-periodic phase with ®™"a/v,,. The duration time is given in units
of h/va,., where h is the distance of the observation level from the source.
Also shown are the data points (x ) from Tapping’s (1978) record of meter
wavelength pulsating bursts during the 1972 May 21 solar noise storm.

early to be the direct source of the observed pulses. If we
suppose that the impulsive generation of disturbances occurred
some 5 min (say) before the start of the pulses and equate this
time to h/v,, the theoretical onset time of the quasi-periodic
phase, we obtain v, = 10° km s™* for h =3 x 10°> km. The
theoretical lifetime of the quasi-periodic phase is
h(1/cg™ — 1/v,), which, if set equal to the observed 150 s,
implies that ¢j"™ = 667 km s~ . Relation (4) implies that the
observed periodicity of 2.5 s is consistent with a cylinder of
diameter in excess of 1900 km. In fact, inspection of Figure 8
gives a diameter of 2250 km. All these values are reasonable,
though it is difficult to be more precise without further data.

An event described by McLean and Sheridan (1973) is
somewhat unusual. They observed a pulse train which started
abruptly (some 7 min 40 s after a subflare) but decayed
gradually. This may be reconciled with our theoretical picture
(Fig. 3a) if we suppose, assuming that the periodic phase is
lost in the noise, that the quasi-periodic phase was of fairly
short duration (because cj™ is close to v,); the decay phase
is then correspondingly extended. Our suggestion, then, is that
the pulse train observed by McLean and Sheridan occurred
within a weakly structured region of the corona, for which
va. i close to v,. With only a small density difference existing
between the inside and the outside of a tube, the duration of
the quasi-periodic phase is reduced and the decay (Airy)
phase is lengthened. A profile similar to that found by
McLean and Sheridan then results.

IV. CONCLUDING REMARKS

Fast magnetoacoustic waves in dense coronal structures
(loops or dense open field regions) exhibit a complex array
of propagation characteristics. The waves are trapped within
regions of low Alfvén speed (high gas density), propagating
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anisotropically in the density ducts. In the low-f conditions
of the corona, the sausage and kink modes of propagation are
closely akin to the Pekeris waves in the ocean and the Love
waves in the Earth’s crust.

A dense coronal loop, with its feet anchored in the photo-
sphere, is able to support standing oscillations, both in the
kink mode and the sausage mode. We have suggested that the
kink mode may be the oscillation reported in separate events
by Trottet et al. (1979), Strauss, Kaufmann, and Opher (1980),
and Koutchmy, Zhugzhda, and Locans (1983).

Animpulsively generated disturbance propagating in a dense
region of the corona (either in a loop or an open field region)
exhibits a complex signature in the oscillations. We have
discussed the sausage mode in detail. At an observation point
adistance h from the impulsive source, the disturbance begins
as a low amplitude, almost constant frequency, oscillation.
This periodic phase begins at a time h/v,, and ends at a time
h/va, when the quasi-periodic phase begins. The quasi-periodic
phase is of stronger amplitude and higher frequency than the
earlier periodic phase; it ends at the time h/cj™, where cj'™ is
the minimum in the group velocity. The end of the quasi-
periodic phase is marked by a decay phase, as the amplitude
of the disturbance declines (though the oscillation persists) in
time.

We have argued that the above described features are
similar to the observed characteristics of pulsations in Type IV
radio events. In particular, we have suggested that it is the
quasi-periodic phase that is most probably observed, the earlier
lower amplitude (periodic) phase presumably being buried in
the noise. The decay phase is generally abrupt in a high density
inhomogeneity (po > p., Var > va), but becomes more pro-
tracted if the inhomogeneity is less pronounced (say,
po = 2p,). The slowly decaying train of pulses observed by
McLean and Sheridan (1973) may be an instance of such a
protracted decay phase in a weak inhomogeneity.

1 ~ — : —
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FIG. 8.—A plot of a/h (in units of t™"/z,,..) against 74, (in units of
Tonser): HETE Tonsee = h/va is the time that elapses between the impulsive
generation of the disturbance and the onset of the quasi-periodic phase;
™" is the period of the disturbance at the end of the quasi-periodic phase;
Tq4ur 1S the time of duration of the quasi-periodic phase. The figure may be
used to deduce the width (diameter) 2a of the inhomogeneity in terms of
the recorded values of 14, Tonser, T™", and h.
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In our discussion of an impulsively generated disturbance
we have considered the single impulse only. In fact, disturb-
ances could be generated by a succession of impulses. In such
a case we may anticipate that the quasi-periodic and periodic
phases generated by one impulse may interact with the decay
or quasi-periodic phases of a previously generated disturbance.
This would produce a more complicate picture than we have
indicated in Figure 3. Additionally, kink disturbances will also,
in general, be generated by an impulsive source. Thus, only
rarely will an event proceed in the direct and straighforward
fashion described above and depicted in Figure 3. More
commonly, a distortion of the various phases is to be expected
due to interactions with kink waves or a repetitive generation
of modes by the impulsive source.

In much of our discussion we have envisaged the impulsive
source to be a flare or subflare. Indeed this is the commonly
observed occurrence, a flare or subflare preceding the onset
of radio pulsations. However, there are exceptions, the event
reported by Gaizaukas and Tapping (1980) being a particularly
clear one.

Another complicating factor in applications of our theory
to the observations is the role played by dissipative processes
and nonlinearities in modifying the evolution of an impulsively
generated disturbance. An order-of-magnitude estimate of the
radiative and conductive time scales is readily made and
indicates that these time scales are long compared with the
periods observed in radio pulsations. Thus, radiative and
conductive effects are probably slight. Viscous effects, however,
are likely to be important (Hollweg 1983) and may act as a
filter preventing weakly generated disturbances from propa-
gating far from their source. Additionally, viscous dissipation
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is most effective in weak field regions (see Gordon and Hollweg
1983), so it may be that only strongly (possibly shock)
generated disturbances in strong field regions (say B > 10
gauss)are manifest far from the site at which they are produced
(see also McLean et al. 1971). These considerations suggest
that nonlinearities may be important at some stage in the
evolution of a disturbance. Indeed, nonlinearities may be
responsible for the observed asymmetry in the shape of
individual pulses.

We conclude this paper with some brief remarks on the
possibility of using radio pulsations as a diagnostic tool of
physical conditions in the corona. The distinctive character
of an impulsively generated disturbance, as described here for
the sausage mode, makes it attractive as a diagnostic tool
of in situ conditions in coronal inhomogeneities. The width of
the inhomogeneity and the associated Alfvén speeds should
be obtainable from a well-observed event, given that our
identification of radio pulsations with ducted fast magneto-
acoustic waves is correct. Of course, both detailed observations
and theoretical calculations are necessary before such a possi-
bility can be fully realized. Nevertheless, we feel that the
potential for such a development is evident. It is in such a
spirit that we offer the present discussion.
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